Syed YH, Khan M 2, Bhuvaneshwari J3, Sayyed Mateen1
1Department of Pharmacognosy, MESCO College of Pharmacy, Hyderabad-500006 AP, India;
2Department of Pharmacognosy, Oriental College of Pharmacy, Mumbai, Maharashtra, India;
3Department of Pharmacognosy, Al-Ameen College of Pharmacy, Bangalore, Karnataka, India.
ORIGINAL RESEARCH ARTICLE
Volume 2, Issue 1, Jan-April 2014.
Article history
Received: 25 March 2014
Revised: 20 April 2014
Accepted: 26 April 2014
Early view: 28 April 2014
*Author for correspondence
E-mail: [email protected]
Mobile/ Tel.: 000000000000
Keywords:
Glycyrrhiza glabra,
Standardization
Phytochemical
Saponins
HPTLC
HPLC.
ABSTRACTBackground: The present study is an attempt to evaluate and standardize three samples of Glycyrrhiza glabra roots from different geographical areas.
Material and methods: The preliminary physico-chemical, qualitative, quantitative phytochemical investigation of the roots of G. glabra from different locations was done as per the procedures specified in standard literature. The three samples were also subjected to chromatographic fingerprinting by HPTLC and HPLC using glycyrrhizin ammonical hydrate as standard. The dried roots were extracted successively with various solvents with increasing polarity and all the extracts were subjected to phytochemical screening for the identification of phytoconstituents.
Results: The presence of carbohydrates, proteins & amino acids, glycosides, saponins, phytosterols, fixed oils, gums & mucilage, flavonoids and resins was revealed by qualitative examination of the various extracts of G. glabra roots. The quantitative analyses further substantiated the findings that saponins are present in significant amounts and alkaloids are absent in the drug. The chromatographic fingerprinting data conformed to the bands and peaks in HPTLC and HPLC analyses respectively in comparison to the glycyrrhizin ammonical hydrate values.
Conclusion: The results in this study can be used for the genuine identification of the plant from its adulterants and subsequent screening for potent bioactivity.
Material and methods: The preliminary physico-chemical, qualitative, quantitative phytochemical investigation of the roots of G. glabra from different locations was done as per the procedures specified in standard literature. The three samples were also subjected to chromatographic fingerprinting by HPTLC and HPLC using glycyrrhizin ammonical hydrate as standard. The dried roots were extracted successively with various solvents with increasing polarity and all the extracts were subjected to phytochemical screening for the identification of phytoconstituents.
Results: The presence of carbohydrates, proteins & amino acids, glycosides, saponins, phytosterols, fixed oils, gums & mucilage, flavonoids and resins was revealed by qualitative examination of the various extracts of G. glabra roots. The quantitative analyses further substantiated the findings that saponins are present in significant amounts and alkaloids are absent in the drug. The chromatographic fingerprinting data conformed to the bands and peaks in HPTLC and HPLC analyses respectively in comparison to the glycyrrhizin ammonical hydrate values.
Conclusion: The results in this study can be used for the genuine identification of the plant from its adulterants and subsequent screening for potent bioactivity.