Proconvulsant effects of estriol-a female ovarian hormone on kianic acid induced seizures in mice

Aakifa Ahmad¹*, Md. Naushad Alam², Abul Kalam Najmi³, Farhan Jalees Ahmad⁴.

¹Department of Pharmacology College of Pharmacy, Monad University, Hapur, Uttar Pradesh, INDIA.
²College of Pharmacy, King Khalid University, Abha, KSA.
³Department of Pharmacology, Faculty of Pharmacy, Jamia Hamdard, New Delhi, INDIA.
⁴Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard, New Delhi, INDIA.

ABSTRACT

Background: The estriol which was evaluated for its effect on Kianic acid kindling model of epileptogenesis in mice followed by evaluation on kindling-induced changes in cognitive and motor functions.

Material and methods: Kindling was induced on every alternate day for duration of 45 days and treatment with kianic acid was given at dose ranging from 15 to 30 mg/kg body weight intraperitoneal (i.p) and estriol was also administered at dosage of 0.005 and 0.1 mg/kg through i.p. After induction of kindling the seizure severity was recorded and further percentage incidence of animals kindled at the end of 45 days was also recorded. Spatial learning and cognitive alterations was assessed by Morris water test (MWT) and spontaneous alternation behavior (SAB) while motor function was assessed by grip strength meter.

Results: Estriol increased the rate of kindling in both the sexes of mice at great scale. Percentage incidence of seizures was also intensified. A noticeable decline in the grip strength, spontaneous alteration behavior and Morris water was observed following KA-kindling in pre-treated estriol groups of mice both the sexes.

Conclusion: Control animals developed a seizure score of 4 after the end of 5 weeks, mice treated with estriol exhibited kindling in first two weeks only Clomiphene at dose of 0.9 mg/kg i.p. exhibited anticonvulsant effects. The study displayed that estriol has powerful anticonvulsant effect.

Keywords: Estriol, kainic acid, seizures, clomiphene, spontaneous alteration behavior, grip strength meter.

INTRODUCTION

Given the heterogeneity and complexity of seizures, its association with estrogens has been difficult to define. Existence of contrasting data on the association between estrogen and epileptic seizures has made it a much more interesting subject. Although it is generally believed that estrogen increase neuronal excitability and mediates proconvulsant effects (Veliskiova, 2006; Edwards et al., 1999; Nicoletti et al., 1985). There are clinical and animal data to show that estrogen also have anticonvulsant effects (Veliskiova, 2007; Reibel et al., 2000; Kalkbrenner and Standley, 2003; Tominaga et al., 2001). Estrone (E1), estradiol (E2) and estriol (E3) are the three biologically active estrogen present. Estradiol is the major estrogen in premenopausal women and is the most investigated among all estrogen in various epilepsy models.

Earlier studies of estradiol administration in rodents have revealed proconvulsant effects (Nicoletti et al., 1985). Estrogen applied to cortex could increase seizures (Marcus et al., 1996). Estradiol was shown to facilitate kindling (Reddy, 2009).

While most of the studies show proconvulsant effects of estradiol, there are also studies which report anticonvulsant and neuroprotective effects. Pretreatment...
with beta-estradiol in female rats showed neuroprotective effects on status epilepticus induced neuronal damage (Veliskiova, 2000). Estrogen was reported to attenuate clonic seizures induced by kainic acid (Budziszewska et al., 2001).

There are very few studies evaluating the role of estrone and estriol on seizures. Barha and co-workers (2010) recently reported a reduced percentage of animals with hippocampal neuronal loss following estrone (E1) (Budziszewska, 2001). It was also shown to significantly decrease the percentage of animals with clonic seizures and their mortality in kainate-induced seizures (Ahmad and Vohora, 2014). Thus both anticonvulsant and neuroprotective effects have been reported with estrone.

So far, estriol (E3), the third estrogen has not been investigated for its effects on seizures. There is insufficient information on how it can affect seizures or neuronal excitability. The present study, thus, evaluated the effects of this hormone on kainic-acid kindling model of epileptogenesis in mice followed by evaluation on kindling induced changes in motor and cognitive functions. Further, since sex can influence the effect of estrogen on seizures, the study would involve both male and female mice.

MATERIAL AND METHODS

Animals

Swiss Albino mice weighing between 25-35g were used. They were housed in polypropylene cages and maintained at 25-30 °C and 50% relative humidity in a natural light/dark cycle. Animals were given food and water *ad libitum*. The mice were kept separate from the opposite sex all the time. Institutional Animal Ethics Committee (IAEC) of Pinnacle Biomedical Research Institute (PBRI), Bhopal (Reg. No. 1824/PO/ERE/S/15/ CPCSEA) had approved the study and study approval reference number is PBRI/IAEC/PN-16026.

Drugs

Kainic acid, estriol and clomiphene citrate were purchased from Sigma, USA and diazepam was procured from Ranbaxy-Sun Pharma, India. Estriol was dissolved in DMSO and administered in doses of 0.005 and 0.01 mg/kg i.p. DMSO was given to control group as a vehicle. Clomiphene was dissolved in distilled water and administered intraperitoneally at dose of 0.9 mg/kg. Diazepam was taken as standard and given at 3 mg/kg.

Experimental design

Induction of kindling

Kainic acid (KA), from Sigma-Aldrich, dissolve in 0.9% saline at 5 mg/ mL to keep the injection volume below 0.5 mL, and was prepared fresh on the day of each experiment. Mice were given intraperitoneal (i.p.) injections of KA, at doses ranging from 15 to 30 mg / kg body weight. Behavioral seizure activity was monitored for 2 h and classified according to a modified Racine scale (Racine, 1972): stage 0, normal behavior; stage 1, immobility; stage 2, repetitive movements, myoclonic twitch, or head bobbing; stage 3, bilateral forelimb clonus and rearing; stage 4, continuous rearing and falling; and stage 5, generalized tonic–clonic seizure.

Grip strength test

The neuromuscular function was determined with the aid of a grip strength meter. The mouse was allowed to hold the grip with it forepaws. The mouse was then pulled back horizontally until it released its grip. The grip strength reading was read directly read from the digital meter (Ali et.al., 2004).

Spontaneous alternation behavior (SAB)

SAB in a plus maze was assessed using the method of (Vohora et al., 2005). After being placed in the central platform, mice were allowed to traverse the maze freely for 6 minutes. The number and sequence of entries was recorded; an alternation is defined as entry into four different arms on an overlapping quintuple set. Five consecutive arm choices within the total set of arm choices constitute a quintuple set.

Spatial memory: Morris water maze test

Spatial learning and cognitive alterations was assessed using the water maze test described by Morris in 1984 and further tested by Charles V and Michael T (2006). It consists of a circular plastic pool of 73 cm in diameter and filled with water, kept at 27 ±2°C, at a depth of 56 cm. The pool was divided conceptually into four quadrants and a platform (6 × 6 cm) was placed 1 cm below the water surface in the center of one of the four quadrants. A mouse was released into the water at one of four randomly selected positions near and facing the wall. Mice were trained with 4 trials per day for 5 days (at 1 min intervals). In probe trails, mice were allowed to swim for 360 s. The pool remained in the same position inside of the room, due to the fact that an animal’s ability to locate the platform depends on the use of visible keys available around the pool. A record should be made of latency, defined as the time elapsed from the moment of release to the moment it climbed on the platform. It was
considered that an animal has found the platform when it stays on it for 5 s.

Statistical analysis
The data obtained were analyzed by analysis of variance (ANOVA) followed by Dunnett’s multiple comparison test. P<0.05 was considered to be significant.

RESULTS
Consequence of estriol and clomiphene in kainic acid model of mice on incidence of kindling. Kindling was induced chemically in both the sexes by using repetitive treatment of KA at a subconvulsant dose (25 mg/kg i.p) every alternate day (Fig 1 Effect of estriol and clomiphene on the incidence of animals kindled following repeated treatments).

![Figure 1. Effect of Estriol and Clomiphene on the incidence of animals kindled following repeated treatment with a subconvulsant dose of Kainic acid in mice.](image1)

VEH: Vehicle (Dimethyl sulfoxide); EST: Estriol; CLO: Clomiphene; DZP: Diazepam; KA: Kainic Acid. Kainic Acid (25 mg/kg) was administered once every 2 days for 5 weeks while EST 1 (0.005 mg/kg) and EST 2 (0.01 mg/kg) and CLO (0.9 mg/kg) were administered daily. All treatments were given by intraperitoneal route. The total number of animals/group = 24 (12 males and 12 female mice) ** P <0.01, when compared with normal control (Group I), ## P<0.01, when compared with toxic control (Group 2), significant by ANOVA followed by Dunnett’s multiple comparison test.

![Figure 2a. Effect of Estriol and Clomiphene on seizure severity during induction of kindling by KA in male mice.](image2)

Data are presented as mean ± SEM, VEH: Vehicle (Dimethyl Sulfoxide); EST: Estriol; CLO: Clomiphene; DZP: Diazepam; KA: Kainic acid. KA (25 mg/kg) was administered once every 2 days for 5 weeks while EST 1 (0.005 mg/kg) and EST 2 (0.01 mg/kg) and CLO (0.9 mg/kg) were administered daily. All treatments were given by intraperitoneal route. The total number of animals in a group were 7. **P < 0.01; when
compared with control (group 1) using ANOVA followed by Dunnett’s t-test. **P < 0.01; when compared with toxic control (group 2) using ANOVA followed by Dunnett’s t-test.

Group of animals both the sexes who were given clomiphene and diazepam followed by KA illustrated very significant reduction in percentage of incidence (Fig 1). They illustrated the similar performance in severity of seizure scale too (Fig 2a,b).

When group of animals both the sexes were pre-treated with estriol at dosage of (0.005 and 0.01 mg/kg i.p), it was observed that it reduces the kindling induction time from 5 weeks to 3-2 weeks for male and female mice respectively. Furthermore, it also elevates the percentage incidence of seizures (Fig. 1), on the other hand Clomiphene (0.9 mg/kg i.p) exhibited significant (P<0.01) reduction of percentage incidence of KA-induced kindling and postpones the development of kindling (Fig. 1, 2).

Figure 2b. Effect of Estriol and Clomiphene on seizure severity during induction of kindling by PTZ in Female mice.

Data are presented as mean ± SEM, VEH: Vehicle (Dimethyl Sulfoxide); EST: Estriol; CLO: Clomiphene; DZP: Diazepam; KA: Kainic Acid; PTZ (25 mg/kg) was administered once every 2 days for 5 weeks while EST 1 (0.005 mg/kg) and EST 2 (0.01 mg/kg) and CLO (0.9 mg/kg) were administered daily. All treatments were given by intraperitoneal route. The total number of animals in a group were 7. **P < 0.01; when compared with control (group 1) using ANOVA followed by Dunnett’s t-test. ##P < 0.01; when compared with toxic control (group 2) using ANOVA followed by Dunnett’s t-test.

Figure 3. Effect of Estriol and Clomiphene on the grip strength following KA-induced kindling in mice.

All the values were expressed as mean ± SEM. VEH: Vehicle (Dimethyl Sulfoxide); EST: Estriol; CLO: Clomiphene; DZP: Diazepam; KA: Kainic Acid; KA (25 mg/kg) was administered once every 2 days for 5 weeks while EST 1 (0.005 mg/kg) and EST 2 (0.01 mg/kg) and CLO (0.9 mg/kg) were administered daily. All treatments were given by intraperitoneal route. The total number of animals/group = 24 (12 males and 12 female mice). **P<0.01 when compared with normal control (Group I), ##P<0.01 when compared with toxic control (Group II), significant by ANOVA followed by Dunnett’s t-test.

Consequence of estriol and clomiphene on grip strength (GS), spontaneous alteration behaviour and morris water maze following repeated treatment with a subconvulsant dose of KA for 5 weeks in mice.

A noticeable decline in the grip strength, spontaneous alteration behavior and morris water was observed following KA-kindling in pre-treated estriol groups of
mice both the sexes (p<0.01, Fig. 3, 4, 5). Clomiphene and diazepam were found to be unsuccessful in reversing the estriol effects in KA-kindled mice for grip strength (GS), spontaneous alteration behaviour and Morris water maze tests.

Figure 4. Effect of Estriol and Clomiphene on the spontaneous alternation behaviour of mice following KA-induced kindling.

All the values were expressed as mean ± SEM, VEH: Vehicle (Dimethyl Sulfoxide); EST: Estriol; CLO: Clomiphene; DZP: Diazepam; KA: Kainic acid; KA (25 mg/kg) was administered once every 2 days for 5 weeks while EST 1 (0.005 mg/kg) and EST 2 (0.01 mg/kg) and CLO (0.9 mg/kg) were administered daily. All treatments were given by intraperitoneal route. The total Number of animals/group = 24 (12 males and 12 female mice). "**"P<0.01, *P<0.05 when compared with normal control (Group I), "#"P<0.01, "#"P<0.05 when compared with toxic control (Group II), significant by ANOVA followed by Dunnett’s t-test.

Figure 5. Effect of Estriol and Clomiphene on Morris water test of mice following KA-induced kindling.

Vehicle (Dimethyl Sulfoxide); EST: Estriol; CLO: Clomiphene; DZP: Diazepam; KA: Kainic acid; KA (25 mg/kg) was administered once every 2 days for 5 weeks while EST 1 (0.005 mg/kg) and EST 2 (0.01 mg/kg) and CLO (0.9 mg/kg) were administered daily. All treatments were given by intraperitoneal route. The total Number of animals/group = 24 (12 males and 12 female mice).

DISCUSSION

It has been commonly accepted that estrogens are excitatory to the central nervous system (CNS) and mediate proconvulsant effects (Edwards et al., 1999; Nicoletti et al., 1985; Veliskiova, 2006). However, recently it has become clear that they also have anticonvulsant effects (Veliskiova, 2007; Kalkbrenner and Standley, 2003; Tominaga et al., 2001) and neuroprotective (Brann et al., 2007) effects. These opposite effects of estrogens on seizures depends upon treatment duration, latency prior to seizure testing, dose, hormonal status and/or seizure type and model used etc. In the present study, we endeavored to determine how Estriol (E3), the third estrogen, affects seizure susceptibility in a rodent model of epileptogenesis. We selected estriol due to two reasons: firstly, this is the hormone which has virtually been neglected in epilepsy research even though it is one of the three principle estrogens produced by the body (Reddy, 2009) and secondly, it has recently been considered to be one of the safest hormone in postmenopausal women undergoing hormone replacement therapy (HRT) (Draca, 2006; Takahashi et al., 2000) as well as offered neuroprotection in patients with multiple sclerosis (Zemlyak et al., 2002) (Ahmad and Vohora, 2014).

From the result we concluded that estriol at both the doses significantly reduced the time for induction of kindling and moreover when control animals developed a seizure score of 4 after the end of 5 weeks, mice treated with estriol exhibited kindling in first two weeks only (Fig 1 and 2). The estriol treated mice also showed significant increase in the % incidence of animals kindled (Fig 1) and a higher seizure severity. Human dose of esriol was used in our study and surprisingly this dose produced such a marked proconvulsant effect, which is ironic and thought for concern regarding the patients who are at risk for seizure disorders. Moving forward the behavior indicative of more kindled females than males mice in the above study, the explanation for this could be related to changes in the estrous cycle and exacerbation of catamenial seizures in females (Scharfman et al., 2003). Their estrous cycle dates were not included in our study. Wahnschaffe and Loscher (1992) reported, however, that natural changes in the sex hormone levels during the estrous cycle doesn’t affect seizure susceptibility in the amygdala kindling model of epilepsy. Henceforth, as we have used another model, it is indicative that the seizure susceptibility was affected by changes in hormone levels in female mice.

The role of Estradiol, the most extensively investigated estrogen, on seizure activity is thought to be partly mediated through estrogen receptors (ERs) (Levin, 1999; McEwen, 2001). Pretreatment with Clomiphene Citrate, an antagonist of ERs, couldn’t reverse the marked proconvulsant effects of Estriol. However, it demonstrated significant antiepileptogenic effects against development of PTZ-kindling. The antiepileptogenic effects of Clomiphene observed in our study were even comparable to diazepam. Though not many studies have investigated the effects of Clomiphene on seizures, our
findings are in agreement with a case report (Herzog, 1988) where Clomiphene benefited a 36 years old man from developing seizures. Other clinical evidence also shows anticonvulsant effects of Clomiphene in both epileptic men and women (Check et al., 1982; Andrew et al., 1999). Nicoletti and co-workers (1985) demonstrated a mild anticonvulsant effect of Clomiphene against kainic acid (KA)-induced seizures in rats and a proconvulsant effect when Clomiphene was used at higher doses. It has been postulated that Clomiphene may improve seizures by either normalizing the serum testosterone levels, by raising the serum levels of other anticonvulsant drugs or by an action at a cerebral level (Herzog, 1988).

AED therapy and epilepsy is associated with motor and cognitive dysfunction, for this reason we also evaluated the effects on grip strength, spontaneous alteration behavior, rotarod and morris water test following KA-induced kindling in mice. A convincing decline in the strength, spontaneous alteration behavior, rotarod and morris water test was noted after KA-induced kindling indicating a decline in motor function and spatial memory, clomiphene and diazepam were unsuccessful in reversing their effect. A contrasting effect of estriol on SAB with respect to other two estrogens (estrodial and estrone) was reported as estriol reduced it (Brann et al., 2007;Gibbs and Gabor, 2003). Our study suggests that estriol may have distinct effect on cognitive functions that the other two estrogen, estrone and estradiol. Clomiphene has recently been speculated to treat cognitive impairment (Tan et al., 2003).

CONCLUSION

From our study we concluded that estriol has contrasting powerful anticonvulsant effect from other two estrogens (estrone, estradiol). It enhances the development of KA-induced kindling which was not reversed by clomiphene and diazepam. Its administration in patients who has history or susceptible to seizures is not advisable.

ACKNOWLEDGEMENTS

I am highly thankful to Pinnacle Biomedical Research Institute (Bhopal, India) for providing me with the opportunity to complete my Ph.D. research work.

CONFLICT OF INTEREST

None declared.

REFERENCES

Veliskiova J.Estrogens and Epilepsy: why are we so excited? Neuroscientist. 2007; 13:77-88.
