Comparative efficacy of the curcumin against H₂O₂ induced ROS in cervical cancer biopsies and hela cell line

Sohail Hussain¹².

¹Department of Biochemistry, Faculty of Medicine, J. N. Medical College, Aligarh Muslim University, Aligarh, INDIA.
²Department of Biochemistry, College of Pharmacy, Jazan University, Jazan, Kingdom of Saudi Arabia (KSA).

ORIGINAL RESEARCH ARTICLE

ABSTRACT

Background: Antioxidants have played an important role in maintaining physiological homeostasis. Recent literature emphasizes potential therapeutic effects of curcumin (antioxidants) found in natural products that displayed anti-inflammatory and antioxidant effects applicable in preventing oxidative stress induced injury, which characterizes their pathogenesis.

Materials and Methods: HeLa cell line and cervical cancer biopsies (CCB) were treated with varying dose of curcumin to determine its effects. Thereafter hydrogen peroxide (0-10nM) - a ROS generating compound was co-cultured with varying doses of curcumin. The effect of these compounds on Superoxide dismutase and Glutathione peroxidase activity was assessed.

Results: The activity of SOD and GPx was found to be affected by the nearly similar magnitude in cervical cancer biopsies & hela cell line.

Conclusion: Comparative efficacies of natural antioxidants were found to be similar activity in cervical cancer biopsies (CCB) and heLa cell line.

Keywords: Curcumin, SOD, GPx, HeLa and Cervical Cancer.

INTRODUCTION

Globally, cervical cancer affects approximately 490 000 women each year resulting in 270 000 mortalities (Ferlay et al., 2004). Interestingly, in recent years, cervical cancer mortality rate has declined in developed countries due to health awareness, screening programmes and advances in therapy.

Oxidative stress has been implicated in playing a crucial role in aging and in the pathogeneses of a number of diseases, including cancer (Pasupathi et al., 2009; Weinberg et al., 2009). Oxidative stress occurs due to an imbalance in pro-oxidant and antioxidant levels (Gokul et al., 2010). Reactive oxygen species (ROS) are highly reactive and may modify and inactivate proteins, lipids, DNA, and RNA and induce cellular dysfunctions. To prevent free radical-induced cellular damage, the organism has developed a defense mechanism, the antioxidative system. In this study we only emphasize on superoxide dismutases (SOD) and glutathione peroxidise (GPx) activity.

The polyphenol Curcumin (diferuloylmethane; 1,7-bis(4-hydroxy-3-methoxy-phenyl)1,6-heptadiene-3,5-dione) is an orange-yellow compound with limited water solubility that is obtained from the turmeric plant, Curcuma longa. Curcumin has been shown to exhibit a variety of biological effects (Maheshwari et al., 2006), such as anti-oxidant (Samhuseeto et al., 2009), anti-inflammatory, anti-tumor and wound-healing properties (Srivastava et al., 1995; Jurenka, 2009) and anti-proliferative property. These activities are exerted through an equally wide variety of signaling pathways, which may involve either inhibition (Chen, et al. 1998; Gaedeke et al 2004; Zhou et al., 2007) or activation (Hu et al., 2005) of specific intracellular signaling pathways. These varied beneficial effects have led to investigation of curcumin as a potential therapeutic agent in a number of disease conditions.

Cite this article as: Hussain S. Comparative efficacy of the curcumin against H₂O₂ induced ROS in cervical cancer biopsies and hela cell line. Int J Adv Pharm Med Bioallied Sci. 2017; 2017:123.
(Aggarwal et al., 2007; Reddy et al., 2005; Thangapazham et al., 2006).

In the present study, we examined the activity of glutathione peroxidase and superoxide dismutase in control biopsies (CB), cervical cancer biopsies (CCB) and HeLa cell line by using curcumin. In other part of our study, we treated the cancer biopsies and HeLa cell line with hydrogen peroxide (H$_2$O$_2$), ROS producing compound modulating with the varying concentrations of curcumin.

As the active role-played by reactive oxygen species (ROS) in the cervical cancer is well established, thus an attempt was made to probe natural compounds having antioxidant properties in arresting ROS in cancer cells. Various workers have extensively carried out such studies on cervical cancer HeLa cell line (Shan et al., 2014, Bhimani et al., 1993), but no work was done on cervical cancer biopsies. Thus, here we observed the protective role of curcumin on SOD and GPx in cervical cancer biopsies and compared it with the HeLa cell line.

MATERIALS AND METHODS

All chemicals were obtained from Sigma-Aldrich (Milan, Italy). Curcumin purchase from Sigma Chemical Company (St Louis, U.S.A.). Cell culture plates, Dulbecco’s modified Eagle’s media were from Himedia (India).

Cell culture

The human cervical cancer cell line HeLa was obtained from the National Centre for Cell Science, Pune, India. Cervical cancer biopsies was collected from the Gynaecology ward of Jawaharlal Nehru Medical College, Aligarh, India. The cells were maintained in Dulbecco’s modified Eagle’s medium (Sigma, USA) supplemented with 10% (v/v) heat-inactivated fetal bovine serum (Hyclone), and antibiotic (Ampicillin) in a humidified atmosphere of 95% air and 5% CO$_2$ at 37°C.

Glutathione peroxidase assay

Control biopsies, cervical cancer biopsies and Hela cell line were treated with curcumin (50 μg/ml) and H$_2$O$_2$ (10 nM) for 24 hr to estimate the activity of SOD and glutathione peroxidase (GPx). The activity of GPx was measured as described elsewhere (Young JF et al., 2002, Yang CS et al 2002, Zhang G et al., 2000). Cancerous cell line were co-cultured for 24 hours with or without curcumin. Thereafter, cells were gently scraped with lysis buffer containing protease inhibitors (50 mM Tris/ HCl, pH 7.4; 1 mM EDTA; 500 mM PMSF). The cell suspension was homogenized and centrifuged at 10,000 rpm for 10 minutes at 4°C. Protein concentration of supernatant was determined by the method of Bradford with BSA as the standard, and were subjected to GPx activity determination. The reaction mixture (1.0 ml) containing 50 mM potassium phosphate (pH 7.0), 1 mM sodium azide, 2 mM GSH, 0.2 mM NADPH, 1 unit/ml glutathione reductase, and 20–100 μl of samples was incubated at 25°C for 5 min. The reaction was initiated by the addition of NADPH. The kinetic change was recorded spectrophotometrically at 340 nm (37°C) for 3 minutes. GPx activity was calculated, as μmol of NADPH oxidized/minute/mg protein (U/mg protein).

Superoxide Dismutase Assay

SOD was measured using superoxide dismutase assay kit provided by Oxis Research, USA SOD-525 method. The BIOXYTECH is based on the SOD-mediated increase in the rate of autoxidation of 5, 6, 6a,11b-tetrahydro-3, 9, 10-trihydroxybenzo [c] fluorene R1 in aqueous alkaline solution to yield a chromophore with maximum absorbance at 525 nm (Maheshwari et al., 2006).

Statistical analysis

Results are expressed as mean ± SD of five individual experiments. Standard deviation (SD) was calculated using Microsoft excel.

Effect of H$_2$O$_2$ and Curcumin on the SOD and GPx activity in control biopsies: Control biopsies cell culture (NB) treated with varying doses of curcumin (0, 10,20,30,40 and 50 μg/ml) for 24 h has shown similar activity of SOD and GPx, so a concentration of 50 μg/ml was selected of study and we also used a reported dose of H$_2$O$_2$ (10 nM). Conversely, the control biopsies cells were treated with H$_2$O$_2$, the activity of SOD & GPx was decreased by 30.22% and 39.85% respectively. Thereafter we treated the H$_2$O$_2$ induced control biopsies with curcumin (50 μg/ml) for 24 h, shows that activity of SOD & GPx ameliorate by 22.99% and 29.97% respectively (Table 1).

Table 1. Effects of curcumin on H$_2$O$_2$ induced normal biopsies

<table>
<thead>
<tr>
<th>S. No.</th>
<th>SOD</th>
<th>GPx</th>
</tr>
</thead>
<tbody>
<tr>
<td>CB</td>
<td>86.04 ± 2.74</td>
<td>84.22 ± 2.64</td>
</tr>
<tr>
<td>CB + H$_2$O$_2$</td>
<td>56 ± 4.16</td>
<td>50.65 ± 2.33</td>
</tr>
<tr>
<td></td>
<td>(-30.22%)</td>
<td>(-39.85%)</td>
</tr>
<tr>
<td>CB + H$_2$O$_2$ +</td>
<td>66 ± 3.60</td>
<td>70.23 ± 2.69</td>
</tr>
<tr>
<td>Curcumin</td>
<td>(+22.99%)</td>
<td>(+29.97%)</td>
</tr>
</tbody>
</table>

CB: Control biopsies; H$_2$O$_2$: Hydrogen peroxide; SOD: Superoxide dismutase; GPx: Glutathione peroxidase.

Values are expressed as Mean ± S.E.M. of 5 experiments, the value in parentheses show the percentage decrease and increased with respect to control. The value of significances (p<0.05)
Table 1. Competitive effect of hydrogen peroxide (H₂O₂) (10 nM) versus curcumin (50 μg/ml), on the SOD and GPx activities in control biopsies (CB) cell culture after 24 h.

<table>
<thead>
<tr>
<th>S. No.</th>
<th>SOD</th>
<th>GPx</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCB</td>
<td>39.10 ± 1.24</td>
<td>37.78 ± 1.72</td>
</tr>
<tr>
<td>CCB + H₂O₂</td>
<td>22.62 ± 0.892 (-38.54 %)</td>
<td>16.36 ± 0.60 (-57.04 %)</td>
</tr>
<tr>
<td>CCB + H₂O₂ + Curcumin</td>
<td>45.45 ± 1.286 (+117 %)</td>
<td>54.76 ± 1.81 (+264.2 %)</td>
</tr>
</tbody>
</table>

CCB- Cervical Cancer Biopsies, H₂O₂ – Hydrogen peroxide, SOD- Superoxide dismutase, GPx-Glutathione peroxidase

Values are expressed as Mean ± S.E.M of 5 experiments, the value in parentheses show the percentage decrease and increased with respect to control. The value of significances (p<0.05)

Table 2. Effects of curcumin on H₂O₂ induced cervical cancer biopsies.

<table>
<thead>
<tr>
<th>S. No.</th>
<th>SOD</th>
<th>GPx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hela</td>
<td>39.89 ± 1.38</td>
<td>40.61 ± 1.68</td>
</tr>
<tr>
<td>Hela + H₂O₂</td>
<td>19.08 ± 1.20 (-52.57 %)</td>
<td>17.60 ± 2.78 (-58.19 %)</td>
</tr>
<tr>
<td>Hela + H₂O₂ + Curcumin</td>
<td>45.91 ± 1.85 (+135.55 %)</td>
<td>52.04 ± 6.73 (+221.53 %)</td>
</tr>
</tbody>
</table>

H₂O₂ – Hydrogen peroxide, SOD- Superoxide dismutase, GPx-Glutathione peroxidase

Table 3. Competitive Effect of Hydrogen peroxide (H₂O₂) (10 nM) versus curcumin (50 μg/ml) on the SOD and GPx activities in HeLa cell line after 24 h.

<table>
<thead>
<tr>
<th>S. No.</th>
<th>SOD</th>
<th>GPx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hela</td>
<td>39.89 ± 1.38</td>
<td>40.61 ± 1.68</td>
</tr>
<tr>
<td>Hela + H₂O₂</td>
<td>19.08 ± 1.20 (-52.57 %)</td>
<td>17.60 ± 2.78 (-58.19 %)</td>
</tr>
<tr>
<td>Hela + H₂O₂ + Curcumin</td>
<td>45.91 ± 1.85 (+135.55 %)</td>
<td>52.04 ± 6.73 (+221.53 %)</td>
</tr>
</tbody>
</table>

Values are expressed as Mean ± S.E.M of 5 experiments, the value in parentheses show the percentage decrease and increased with respect to control. The value of significances (p<0.05)
culturing of cancerous (cervical) cells with curcumin seems to induce apoptosis or acted as anti-inflammatory. Furthermore, apart from the above, a decline in GPx activity was observed in cervical cancer biopsies and cervical HeLa cells that were untreated or treated with H₂O₂, thereby correlating with earlier reports that substantial amounts of ROS are being generated in cancerous cells due to cellular activation (Reddy et al., 2005). Surprisingly, amelioration in SOD and GPx activity were observed when curcumin was co-cultured, indicating curcumin to be an effective natural antioxidant combating ROS, generated as a consequence of cellular activation in cancerous cell. When compared to control biopsies, cervical cancer Biopsies as well as HeLa cell line exhibited an appreciable H₂O₂-mediated suppression in the SOD and GPx activity. Interestingly, curcumin was found to possess a higher potential to ameliorate the SOD and GPx activity in cervical cancer biopsies than in HeLa cell line. The present study, the currently available modern medicines for treating cancers is very expensive, toxic, and less effective in treating the disease (Thangapazham et al., 2006), thus it is essential to investigate further in detail the agents derived from natural sources for the prevention and treatment of cancer. Voluminous clinical trials are needed to validate the usefulness of these agents either alone or in combination with existing therapy.

CONFLICT OF INTEREST

None declared.

REFERENCES

Srivastava KC, Bordia A and Verma SK: Curcumin, a major component of food spice turmeric (Curcuma

